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Necessary and sufficient conditions are given for a function f defined almost
everywhere on the whole real line to have an extension to the complex plane as an
entire function of order I and finite type. These conditions are in terms of the
degree of approximation off by polynomials in weighted LP norms. In the case of
the Hermite weight, an explicit formula for the type of the extension is given.

I. INTRODUCTION

A theorem of S. N. Bernstein characterizes the type and order of an entire
function in terms of the constructive properties of its restriction to [-I, I].
Supposefis a real-valued continuous function on [-I, I]. Let

En(f) = min max If(x) - P(x )1,
-I<X<I

(I)

where the min is taken over all algebraic polynomials P of degree at most n.
The theorem of Bernstein can then be stated as follows:

THEOREM 1 [1]. LetfE C[-I, I]. If, for some A> 0,

lim sup {n!l/AEn(fW/n < 00,
n-ro

(2)

then f has an extension to the complex plane as an entire function f(z) of
order A and offinite type, i.e.,

I
. log max1z1<R If(z)1
tm sup A < 00.
R-ro R

(3)

Conversely, iff is the restriction to [-I, I] ofan entire function ofpositive
order A and finite type, then (2) holds.
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(4)

In this paper, we seek to give necessary and sufficient conditions for a
function f defined almost everywhere on the whole real line to have a entire
extension of order 1 and finite type. These conditions will be given in terms
of the degree of approximation off by polynomials in weighted L P norms.

2. MAIN RESULTS

We consider weights of the form WQ(x) = exp(-Q(x)).

DEFINITION 1. A weight function wQ(x) is said to be in the class VSR
(very strongly regular) if Q(x) satisfies the following conditions:

VSR 1: Q: IR ~ IR is an even function in C 2(0, (0).

VSR2: Q" is positive and nondecreasing on (0, (0).

Q"(x)
VSR3: 1 ~ c1 ~ X Q'(x) ~ c2' X E (0, (0).

Remarks on the class VSR. 1. Weights of the form exp(-c Ixl"), where
c E (0, (0), are in VSR if a ~ 2. 2. The conditions, especially VSR2 and
VSR3, could have been replaced by weaker conditions in terms of the
growth of some Christoffel functions for the weight w~. However, these are
somewhat complicated to state. We shall give quotations at appropriate
places where these weaker conditions are in fact the ones which are used.

For wQ E VSR, let qn be the least positive solution of the equation
xQ'(x) = n:

For a Lebesgue measurable g on IR, put

\ 11
/
P

II gllp = It Ig(x)I
P

dx \ ;

if 1 ~ P < 00,

II gllco = vrai sup Ig(x)l·
XER'l

If wQf E LP(IR) and n is a nonnegative integer, put

(5)

where the inf is taken over all polynomials P of degree at most n - 1. We
denote the class of all polynomials of degree at most n by 7rn • Define

n!=n(n-l) ... l; n ~ 1.
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We can now formulate our theorem as follows:
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THEOREM 2. Suppose wQ E VSR. Let p ~ 1 and wQf E U(IR).

(a) f has an extension to an entire function of order one and finite type,
i.e.,

if

(f) 1· log max1z1=R If(z)1
a = 1m sup R < 00

R--<oo
(6)

(7). !n! ( linp(p, f) = hm sup -en(p, WQ' f) < 00.
n--<oo ~

Conversely, if f is an entire function of order one and finite type, then for
its restriction to the real line (to be denoted by f again), we have
wQfELP(IR)for each p~ 1 and

p(p, f) < 00, p~ 1.

(b) If f is an entire function of order one and finite type aU), then
there exist positive constants C3 and C4 depending upon Q but not on f or p
such that

c3aU)~p(p,f)~c4aU), p~ 1.

(c) IfQ(x)=x 2/2, then p(p,f)=aU)/2112,p~ 1.

3. PROOFS

(8)

(9)

We shall prove the theorem first for p = 2 and then extend it to other
values of p. It is convenient to do so since the Parseval's formula gives a
precise expression for the degree of approximation in the L 2(IR) norm.

Let {Pk(w~, x) = Pk(x)}~o be the family of orthonormal polynomials
with respect to the weight w~(x). For wQf E U(IR), p ~ 1, we have the
Fourier orthonormal expansion

(10)

where

(11 )
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Before we proceed, let us recollect a proposition.

(12)

PROPOSITION 1. (a) There exists a constant Cs such that for every
PE 7rk ,

(13)

For Q(x) = x 2J2, in which case the p/s are the orthonormal Hermite
polynomials, one shows by straightforward computation that Cs can be chosen
to be Vi (and no less).

(b) There exist constants c6 ' C7 such that for each polynomials P E 7rn,

(14)

where 1~ P < r ~ co and c6 , C7 > 0 depend only on Q, p and r.

Proof Part (a) is a special case of the Markov-Berstein-type inequalities
obtained by Freud [3]. Part (b) is given in our paper [6]. I

LEMMA 1. Suppose p(p, I) in (7) is finite Jor p = 2. Let fJ. >p(2, I).
Then there exists a constant Cs = cs(P, Q, I) such thatJor sufficiently large n,

00
I Ibkl I!wQ Pkn1 1100 ~ CsC~fJ.n,
k=n

where bk's are defined by (11).

Proof Choose N such that n ~ N implies

(15)

(16)

(17)
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The series converges by ratio test (say) to a constant c8(P)/c7' thus proving
the inequality (15). I

In view of Lemma 1, the series

converges uniformly in z on compact subsets of the complex plane C. Hence,
we can interchange the order of summation to get

The last series thus converges uniformly on compact subsets of C to an
entire function g(z), say. It follows that the restriction of g to the real line is
almost everywhere equal to f. Further, for g we have the power series

(19)

So,

00

n! lanl ~ ~ IbkllptJ(O)1 ~ wQI(O) C8C~lJn.
k=n

Thus, g is of order I and type a given by [2, p. 11, Formula 2.2.121

a = lim sup {n! lanl! lin ~ CslJ < 00.
n.... oo

Since IJ >P was arbitrary and Cs = Vi if Q(x) = x 2/2, this completes the
proof of the first half of part (a), the first inequality in (8) with C3 = c;- I and
a part of (9) in the case p = 2.

Let us now turn to the remaining parts of the theorem, in the case p = 2.
Let f be the restriction to the real line of an entire function of order one and
finite type (J < r < 00. Since wQE VSR, this implies wQf E L 2(1R). Let

00

f(x) = ~ anxn.
n=O

We have [2, p. 11. Formula 2.2.121

a = lim sup {n! lani} lin.
n .... oo

(20)

(21 )
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PROPOSITION 2. (a) There exists a constant C9 such that

for each n and for each k ~ n.

(b) IfQ(x) = x 2/2, we may take c9 = (J2)-I.

(22)

Proof Part (a) is a special case of the Jackson-Favard-type inequalities
proved by Freud [4]. We prove part (b). Note that if Q(x)=x2/2, then
qk =Vk· Observe, by Rodrigues' formula [8, p. 106], that if n - r is even,
then

(-1)' J n d
r

_x 2

= 1/42r/2, 1/2 X -dr e dx
71: r. 11 x

n! J n-r -~d~~~....,.,..,.._-- x e x
- 71: 1/ 42r/2r! 1/2 (n - r)! 11

~~...,.".-...,...,.".. __n_!_ F (n - r+ 1 ).
- 71: 1/ 42r / 2r1 1/2 (n - r)! 2

So, denoting the Hermite weight by w2 ,

(integrating by parts r times)

(23)

e~k(2, w2 , x 2n
)

_(2nW~ 1 1 F( !-r?
- ..[ii ~k 22r(2r)! (2n - 2rW n + 2

_ 2 (2n-lW f _1_ 1 F(n+~-r)2

- (2n) ..[ii :"::k 2(2r) 22r - I (2r - 1)1 (2n - 2r)!2

(2n)2 (2n - lW \~ 1 F(n + ~ - r)2

~ 2(2k) ..[ii r"-::k 22r - 1(2r - I)! (2n - 2rW

1 2 (2 2 2n -I)= 2(2k) e2k _ 1 , w2, nx .

Similarly,

(24)
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Finally, note that if n - k is odd, then

to complete the proof. I
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PROPOSITION 3. There exists constants cIJ and CIO depending upon Q
alone such that, for each nonnegative integer r,

(25)

Proof Let X ln >x 2n > .,. > x nn be the zeroes of Pn(w~,x) and A.kn the
corresponding Cote's numbers. We have, by the quadrature formula,

r+ I

f 2r 2 ( ) d \' 1 2r
X W Q X X= ....... I\.k.r+IXk,r+1

R k=O

(26)

The result now follows by induction of we apply the inequality [51

(27)

Now, we can complete the proof. Letf(x) = 2:.:'=0 anxn be of type 0 < 00,

o < r < 00. By (21), choose N so large that n ~ N implies

lanl ~ rn/n!.

Then

(28)

(The last inequality is a consequence of, say, the ratio test.) So, if k ~ N, we
get, from (22) and (25),

00

ek(2,wQ,f)~ I /an lek(2,wQ ,xn
)

n=k

640/35/3-2
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Thus,

H. N. MHASKAR

(29)

where cn = c l2(r, Q) is a constant. (We have seen earlier that the last series
converges.) Then,

. !k! (1
1
khm sup -ek(2, wQ,J) ~ cgr.

k .... oo lli
Since r > a was arbitrary, we get

(30)

This proves the theorem in the case p = 2. Observe that C3 = C; I and C4 = Cg,

where Cs and cg were defined in Propositions 1 and 2, respectively. Further, if
wQ = W2 , the Hermite weight, then Cs =..;2 and Cg = 1/..;2, which gives part
(c) of the theorem in the case p = 2.

We now proceed to extend the theorem from the case p = 2 to the case of
arbitrary p ~ 1. In fact, we shall show that the quantity pep, f) of (7) is
really independent of p as long as p ~ 1; i.e., if 1~ p, r ~ 00, then

pcp, I) = per, I).

(cf. [7])

LEMMA 2. (a) There exists a constant C 13 such that for all n E IN,

(31 )

(32)

(b) If a> 0 and r E IR, then there exists a K = K(a, r, Q) such that
k ~K implies

(33)

Proof (a) By conditions VSR3 and VSR2 on wQ '
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(b)

(fu)a k (lfu!)a k+Jk! r + (k + I)! r + ...

(~)a k! r r
2 l= k! r 1 + [(k+ 1)]a + [(k+2). (k+ 1)]a + ...

qk+J qk+2 qk+l

( ~)a k
~2 k! r

if k is large enough. I
Now suppose

In' i lin
p(p, f) = lim sup -' en(p, WQ ' f) < 00

n .... oo ~

for some p ~ 1.
Let p < iJ < 00 and rn E 7Cn be chosen such that

Writing Pn=rn+ J -rn' we get

211

(34)

00

f=,LPn+r o
n=O

in the sense that

Also,

II wQPn11 ~ 4en(p, wQ,f).

Now, if r ~ 1, we have, by (14) (Proposition 1, part b),

if r ~ p.

(35)

(35')

(36)
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p, r ~ 1.

But, in any case, by inequality (32) (Lemma 2, part a),

(
n )I/P-I/r

IlwQPnllr~cls qn II wQPnil p

~ Cl6 (;J II wQPnll p ,

(The last inequality holds since

lip - l/r - 1 = (lip - 1) - l/r ~ 0 and njqn -+ 00 as n -+ 00.)

Then for large enough k,

(37)

(By (33), Lemma 2, part b).
Since Llqk+J!(k-l)l,uk converges (say, by the ratio test), this implies

that L wQPn converges in U(IR) and also in the LP(IR) norm. In the LP(IR)
norm, it converges to fwQ' So,

00

wQf=rowQ+ L wQPn
n=O

in the L r (lR) space and, for large k,

~ k 1 ~
ek(r,wQ,J)~ n=k-I IIwQPnllr~cl8P - (k-2)!

Therefore,

,~: ek(r,wQ,f)~ [C I8 (k+ l)k ]pk=g(k)pk (say).
~ ,uqk+lqk

Now, from (32), Itmk -+ oo [g(k)]l/k = 1. So, sincep >p(p,f) was arbitrary,
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for all p, r ~ I. This completes the proof of our theorem, even for the general
values of p. I

4. REMARKS

(1 ) It is our conjecture that the constants c3 and c4 appearing in (8) are
equal, as they in (9). However, the proof of this seems to require a great deal
of information about the asymptotic behaviour of general orthonormal
polynomials with weights supported on the whole real line, which is far from
being known.

(2) Using the same techniques used in this paper, we can obtain some
expressions for the order and the type of an entire function in terms of
f:n(P, WQ' f), although we do not expect to have in this direction theorems as
complete as part c of our theorem. We hope to return to this question soon.

(3) Part c of our theorem is interesting in that it gives an explicit
expression for the type a(f) in terms of f:n(p, WQ ' f), even if in a special
case, as contrasted to the theorem of Bernstein (Theorem I).
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